Step of Proof: can-apply-mu'
11,40
postcript
pdf
Inference at
*
1
I
of proof for Lemma
can-apply-mu'
:
1.
A
: Type
2.
P
:
A
3.
d
:
x
:
A
. Dec(
n
:
. (
(
P
(
x
,
n
))))
4.
x
:
A
(
isl((TERMOF{
p-mu-decider
:ObjectId, 1:l, i:l}(
A
,
P
,
d
,
x
)).1))
(
n
:
. (
(
P
(
x
,
n
))))
latex
by (GenConclAtAddr [1;1;1;1])
CollapseTHEN ((Thin (-1))
CollapseTHEN (((D (-1)
)
Co
CollapseTHEN (Reduce 0)
)
CollapseTHEN (((D (-2)
)
CollapseTHEN (Reduce 0)
)
CollapseTHEN (
C
(RepUR ``p-mu`` ( -1)
)
CollapseTHEN (MaAuto
)
)
)
)
)
latex
C
1
:
C1:
5. Top
C1:
6.
i
:
.
(
(
P
(
x
,
i
)))
C1:
7.
n
:
. (
(
P
(
x
,
n
)))
C1:
False
C
.
Definitions
s
=
t
,
p-mu-decider
,
,
,
left
+
right
,
A
c
B
,
True
,
{
x
:
A
|
B
(
x
)}
,
p-mu(
P
;
x
)
,
P
Q
,
P
&
Q
,
P
Q
,
P
Q
,
x
:
A
.
B
(
x
)
,
if
b
then
t
else
f
fi
,
False
,
Top
,
x
:
A
.
B
(
x
)
,
Dec(
P
)
,
A
,
x
:
A
B
(
x
)
,
Type
,
x
:
A
B
(
x
)
,
,
b
,
x
:
A
.
B
(
x
)
,
f
(
a
)
,
t
T
Lemmas
p-mu-decider
,
bool
wf
,
decidable
wf
,
top
wf
,
p-mu
wf
,
true
wf
,
false
wf
,
nat
wf
,
assert
wf
origin